Care News – Dr. Wade McKenna

Fall Is In the Air

With the changing season, many of us have football on the brain. Football and fall(s) seem to go hand-in-hand. And with football, injuries unfortunately do take place. As with any sport, the risk of injury is prevalent, but there are precautions and treatments if injury happens.

 

Sports medicine is a subspecialty of orthopedics that focuses on prevention, diagnosis, treatment and rehabilitation of injuries suffered during athletic activity. Here at McKenna Orthopedics, the goal of treatment is to heal and rehabilitate the injury so patients can return to their favorite activities quickly, whether it’s Little League, recreational play or a high school, college or professional sport.

 

Because of the frequent use, wear-and-tear and risk of a fall or accident associated with sports activities, athletes are often susceptible to orthopedic injuries, including a stress fracture, chronic pain, or a tearing or stretching or internal structures. Different activities place different areas at a higher risk for damage, so it’s important to take the necessary precautions to protect yourself while playing sports. Treatment for these conditions may involve surgery, orthotics, physical therapy and rest.

 

We offer a variety of treatments if you or your athlete is suffering from an injury. Contact us today to learn more about our treatments.

The Shoulder Bone’s Connected to the Neck Bone

Everything is the body in interconnected. Isn’t it amazing how if one thing is out of whack, the rest of the body suffers? Have you ever stubbed your toe so badly that it was then hard to walk? One little toe can wreak havoc on the state of the rest of your body.

 

Here at McKenna Orthopedics, we believe in getting you up and running so you can live your best life. Whether its your toe or your back, we want to help.’

 

We offer a pleathora of options and procedures, so you can be confident in your treatment plan. Dr. Wade McKenna has performed over 20,000 surgeries, and with his expertise and innovation, we are hopeful that you will experience healing.

 

You may be experiencing knee pain or shoulder pain. Maybe your back pain has become unmanageable. Whatever stage in life you are in, we want to be in your mind as the best place to come to receive the treatment you deserve.

 

At McKenna Orthopedics, we offer solutions both surgical, and non-surgical that will get you back into the game, faster and with great results.

 

We would love to connect with you, and start the conversation so you can get back to doing life, and living out your best days.

 

 

Abstract: The role of “cell therapy” in osteonecrosis of the femoral head

The role of “cell therapy” in osteonecrosis of the femoral head.

Originally posted on July 17.

Abstract
Background and purpose – The value of core decrompression for treatment of osteonecrosis of the femoral head (ONFH) is unclear. We investigated by a literature review whether implantation of autologous bone marrow aspirate, containing high concentrations of pluripotent mesenchymal stem cells, into the core decompression track would improve the clinical and radiological results compared with the classical method of core decompression alone. The primary outcomes of interest were structural failure (collapse) of the femoral head and conversion to total hip replacement (THR). Patients and methods – All randomized and non-randomized control trials comparing simple core decompression with autologous bone marrow cell implantation into the femoral head for the treatment of ONFH were considered eligible for inclusion. The methodological quality of the studies included was assessed independently by 2 reviewers using the Cochrane Collaboration tool for assessing risk of bias in randomized studies. Of 496 relevant citations identified, 7 studies formed the basis of this review. Results – The pooled estimate of effect size for structural failure of the femoral head favored the cell therapy group, as, in this treatment group, the odds of progression of the femoral head to the collapse stage were reduced by a factor of 5 compared to the CD group (odds ratio (OR) = 0.2, 95% CI: 0.08-0.6; p = 0.02). The respective summarized estimate of effect size yielded halved odds for conversion to THR in the cell therapy group compared to CD group (OR = 0.6, 95% CI: 0.3-1.02; p = 0.06). Interpretation – Our findings suggest that implantation of autologous mesenchymal stem cells (MSCs) into the core decompression track, particularly when employed at early (pre-collapse) stages of ONFH, would improve the survivorship of femoral heads and reduce the need for hip arthroplasty.

 

Read Full Article.

Abstract on Stem Cell Research from AlphaMedPress

In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome

Originally posted on August 18

Abstract
: Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2 × 106 cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation.
SIGNIFICANCE:
This article describes the cases of two patients with severe refractory adult respiratory syndrome (ARDS) who failed to improve after both standard life support measures, including mechanical ventilation, and additional measures, including extracorporeal ventilation (i.e., in a heart-lung machine). Unlike acute forms of ARDS (such in the current NIH-sponsored study of mesenchymal stromal cells in ARDS), recovery does not generally occur in such patients.

Read Full Article.

UCLA Wide Receiver and Canadian Decathlon Standout Zack Bornstein Bounces Back After Stem Cell Therapy

UCLA Wide Receiver Zack Bornstein
UCLA Wide Receiver Zack Bornstein

UCLA wide receiver and Canadian decathlon standout Zach Bornstein suffered a hamstring tear 18 months ago. Conventional treatment and therapy were not working so Zach decided to undergo stem cell therapy at Riordan-McKenna Institute in late June 2015. Dr. McKenna treated Zack with precisely guided injections of bone marrow aspirate concentrate (BMAC) harvested with the patented BioMAC bone marrow aspiration cannula and *AlphGEMS amniotic tissue product.

Complete healing was confirmed by MRI 8 weeks after treatment:

1) No evidence for hamstring strain or denervation and no evidence for tendon tear.
2) No evidence for focal atrophy or hematoma.
3) No osseous abnormalities seen.

After receiving the MRI results, Zack’s father Dean said, “I am not a doctor but looks like you and your procedure has performed a medical miracle! …Thanks for all of your efforts.”

Zack is currently a red shirt freshman at UCLA. He played football at Oaks Christian High School from 2011-’14 and lettered 3 years in football and all 4 years in track. In 2013, Zack was named to the All-Marmonte 2nd team. He played in the FBU Youth All-American game in 2010. In track, he is considered to be one of the top decathletes in the country. Zack competed at the 2013 Pan American Junior Championships in Medellin, Columbia, finishing in 5th place with 7,097 points. In July of 2013, he became the Canadian Junior National Champion (6,918 pts). Zack won the silver medal at the 2013 Arcadia Invitational Decathlon, scoring 6,967 points to set a new California state record for juniors (2nd highest score in California state history). Zack is a 12-time National Champion, 44-time All-American and a member of three National Championship cross country teams.

*Amniotic tissue is donated after normal, healthy births.

 

Originally posted on RMI.

Biologic Therapies Recieves 510(k) Clearance

Biologic Therapies Receives 510(k) Clearance for Bio-MAC and Bio-CORE Bone Marrow Aspiration Cannulas

Ocala, FL (May 12, 2015) – Biologic Therapies, a medical device company specializing in the design and development of products for regenerative medicine, today announced that it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its Bio-MAC and Bio-CORE cannulas. The Bio-MAC Bone Marrow Aspiration Cannula and Bio-CORE Bone Marrow Biopsy Cannula are minimally invasive devices that are inserted into bone with any standard surgical drill.

5-Bio-MACs-Sizes-Logo                               Bio-MAC-Bio-CORE
                                                                         Bio-MAC Bone Marrow Aspiration Cannulas                             Bio-CORE Bone Marrow Biopsy Cannulas

Dr. Wade McKenna, Biologic Therapies’ Chief Medical Director, said, “Unlike traditional bone marrow aspiration cannulas, which are pounded into bone with a mallet or pushed in with brute force, the power driven Bio-MAC and Bio-CORE do not cause microfractures in the bone that can result in pain for the patient. Plus, the Bio-MAC and Bio-CORE are available in multiple lengths, which allow for fast and easy bone marrow draws throughout the anatomy. In addition to the iliac crest and lumbar vertebral body, the tibia, humerus and calcaneus are now viable sites for bone marrow aspiration.

“Our products enable physicians to aspirate bone marrow in their own office with only local anesthesia, which is revolutionary. The ability to aspirate a patient’s marrow, concentrate the marrow in a centrifuge to derive the maximum number of regenerative cells and growth factors, and then give the concentrated cells and growth factors back to the patient in a physician’s office makes regenerative cell therapy a much easier, more available and less costly procedure. The entire point-of-care procedure takes less than 30 minutes. Of course, the Bio-MAC and Bio-CORE are also used in hospitals and surgery centers.”

Autospin-sm         Autospin-Kit
AUTOSPIN Centrifuge                               AUTOSPIN BMAC Convenience Kit

For concentrating bone marrow Biologic Therapies offers its AUTOSPIN centrifuge and convenience kits. The AUTOSPIN is a fully automated dual spin centrifuge that can be programmed to deliver a volume of 3 to 10 ml from each processing cycle. It is a closed system, which dramatically reduces the chance for contamination. Two separate AUTOSPIN Convenience Kits contain all the components needed to process Bone Marrow Aspirate Concentrate (BMAC) or Platelet-Rich Plasma (PRP).

Luke Whalen, Biologic Therapies’ CEO, said, “My team and I are very pleased to receive 510(k) clearance for our Bio-MAC and Bio-CORE cannulas. We are currently expanding our business throughout the United States, Europe, India, China and South Africa. Biologic Therapies is improving the health of patients around the world by making our products the standard of care for regenerative medicine.”

About Biologic Therapies

Based in Ocala, Florida, Biologic Therapies, Inc. (www.biologictherapies.com) (www.amniotictherapies.com) develops innovative technologies to meet the needs of the emerging regenerative medicine segment of the healthcare market. Biologic Therapies’ mission is to provide groundbreaking medical technologies and procedures that significantly enhance the body’s natural healing ability, thereby providing patients with improved outcomes and quicker restoration of function.